February 6, 2020

Lecture 2: Lovász Local Lemma + Beck's Algorithm

Lecturer: Ronitt Rubinfeld

Scribe: Vivian Qian

1 Lovász Local Lemma

1.1 Motivation

We want to argue that there is a nonzero probability that no "bad events" occur. If $A_1, A_2, ..., A_n$ are "bad events", what is the probability that none of them occur?

Usual Way If we assume nothing about A_i 's wrt independence, we can use union bound:

$$\Pr[\cup A_i] \le \sum_i \Pr[A_i]$$

If each A_i occurs with probability p, and $p < \frac{1}{n}$, then $\Pr[\cup \overline{A_i}] > 0$.

Independence If we assume A_i 's are independent and nontrivial (e.g. $\Pr[A_i] < 1$), then:

$$\Pr[\cup A_i] \le 1 - \Pr[\cap \overline{A_i}]$$
$$= 1 - \prod_i \Pr[\overline{A_i}] < 1$$

Therefore, there is always a nonzero probability that no A_i occurs under these assumptions.

What if A_i 's have only "some" independence?

1.2 Lovász Local Lemma

Definition 1. A is *independent* from $B_1, ..., B_k$ if $\forall J \in [k]$ where $J \neq \emptyset$:

$$\Pr[A \cap \bigcap_{j \in J} B_j = \Pr[A] * \Pr[\bigcap_{j \in J} B_j]$$

Definition 2. Given events $A_1, ..., A_n$, D = (V, E) with V = [n] is a **dependency graph** of $A_1, ..., A_n$ if each A_i is independent of all A_j that aren't its neighbors in D.

Theorem 3 (symmetric Lovász Local Lemma). Let $A_1, ..., A_n$ be events s.t. $\Pr[A_i] \leq p \forall i$, with dependency graph D of degree $\leq d$. If $ep(d+1) \leq 1$, then $\Pr[\bigcap_{i=1}^n \overline{A_i}] > 0$.

Notice that this has no dependency on the number of events, n. If the degree d is small, this is better than the union bound.

1.3 Two Coloring Application

Theorem 4. Let $S_1, ..., S_m \in X$ where $|S_i| = l$ and each S_i intersects with **at most** d other S_j 's. If $e(d+1) \leq 2^{l-1}$, then a 2-coloring exists s.t. each S_i is not monochromatic.

Proof. Randomly color each element of X red or blue. Let A_i be the event that S_i is monochromatic. The probability p that A_i occurs is the probability that all elements are red or blue, which is $\frac{1}{2^{l-1}}$. Since each S_i intersects with at most d other S_j 's, and A_i is only dependent on A_j if their intersection is nonempty, the dependency graph D of $A_1, ..., A_n$ has degree d. By Lovász Local Lemma, since

$$ep(d+1) = e * 2^{-(l-1)}(d+1) \le 1,$$

there exists a 2-coloring such that no S_i is monochromatic.

1

Second Application Given a CNF formula with l variables in each clause, with each variable in at most k clauses, if

$$\frac{e(lk+1)}{2^{l-1}} \le 1,$$

there exists a satisfying assignment.

2 Moser-Tardos Algorithm

Theorem 5. Let $S_1, ..., S_m \in X$ be sets with $|S_i| = l$ where each S_i intersects with at most d other S_j 's. If $c * e(d+1) \leq 2^{l-1}$, for some constant c > 1, then a 2-coloring exists such that each S_i is not monochromatic.

2.1 Moser-Tardos Algorithm

- 1. Randomly assign each element of X to red or blue.
- 2. While there exists a monochromatic set:
 - Choose an arbitrary monochromatic set S_i
 - Randomly reassign colors of all elements in S_i .

3 Beck's Algorithm

Stronger Assumptions Let $D = d^4$. Assume *l* is **constant** and that $16D(d+1) < 2^l$.

3.1 Beck's Algorithm

Algorithm 1: Beck's Algorithm
Given $S_1,, S_m \in X;$
First Pass;
for each element $j \in X$ do
if j is "frozen" then
do nothing;
else
pick color $\in red$, blue via coin flip;
consider all S_j containing j
if S_j has l_1 points the same color and no points in the other color then
S_j becomes dangerous;
all uncolored points in S_j are "frozen";
else
pick color $\in red, blue$ via coin flip;
\mathbf{end}
end
end
if S_i is not yet 2 colored, then it "survives";
Second Pass;

Use brute force to find coloring of surviving S_i 's.

3.2 Analysis

Question How can we prove correctness and runtime of Beck's Algorithm?

We consider a single S_i . The probability that it survives is at least as likely as the probability that S_i becomes dangerous. This is because a set S_i can survive if its intersecting elements are frozen by neighboring sets:

$$\begin{split} \Pr[S_i \text{ survives}] &\geq \Pr[S_i \text{ is dangerous}] \\ &= \frac{2}{2^{l_1}} \\ &= 2^{1-l_1} \end{split} // \operatorname{P}(\text{all red}) + \operatorname{P}(\text{all blue}) \end{split}$$

*

The probability S_i is dangerous is exactly if all l_1 elements are red or blue.

We now consider how two different sets S_i and S_j are related. The survival of S_i and S_j is not necessarily independent. Consider the case where $S_i \cap S_j \neq \emptyset$. If the intersecting points are frozen by S_i , the probability that S_j survives is higher. We can extend this logic even in cases where they do not directly overlap.

Figure 1: S_i and S_j dependent

In Figure 1, if the shown $\geq l$ points are monochromatic, the middle two sets will become dangerous. Since the middle two overlap with either S_i or S_j , this increases the probability that either survives. Therefore, S_i and S_j are not independent.

Figure 2: S_i and S_j independent

However, if we consider the case in Figure 2, where S_i and S_j are a distance 4 apart, the middle set becoming dangerous does not affect either S_i or S_j . We conclude that if the distance between S_i and S_j is ≥ 4 , they survive independently of each other.

We will construct an useful graph G to prove correctness.

$$G \leftarrow \text{nodes } V \leftarrow [m] \text{ (each node is a set } S_i)$$
$$\leftarrow \text{edges } (i, j) \in E \text{ iff } S_i \cap S_i \neq \emptyset$$

Observe by LLL, a solution exists for this graph G. We claim the following:

Claim After the first pass, with high probability, all surviving nodes of G form connected components of size $O(\log m \operatorname{poly}(d))$.

Corollary If the above claim is true, then if l is constant, the second pass only needs to brute force $O(2^{lc \log m}) = O(m^{lc})$, which is polynomial in m.

Proof. Consider the biggest tree $T \in C$ such that C is a component that survives and:

- 1. all nodes in T are a distance ≥ 4 in G
- 2. if the nodes in T of distance = 4 are connected in G^4 then T is connected

Figure 3: Nodes in $T \ge 4$ distance in G

If we pick T greedily, there exists a T whose size is $\geq \frac{|C|}{d^3}$. If C survives, then T also survives since $T \subseteq C$. Thus, $\Pr[T \text{ survives}] \geq \Pr[C \text{ survives}]$. Looking at Fig. 1 and 2, for a $S_i \in T$ to survive, it must either:

- S_i is dangerous
- S_i is next to a dangerous S_j that froze its elements

However, since in T all elements are at least distance 4, $S_i \cap S_j = \emptyset$. For each $S_i \in T$, we pick a neighbor $S_{i'}$ in $(d+1)^k$ possible ways where k = |T|. Given all $S_{i'}$ are disjoint, the probability that all k become dangerous is:

 $\Pr[k \text{ nodes } S_{i'} \text{ become dangerous }] \leq (2^{(1-l)})^k$

Using union bound, the probability that all S_i survive:

$$\Pr[\text{all } S_{i'} \text{ survive}] \le (d+1)^k \cdot 2^{k(1-l)}$$

We will now show that no such large tree survives after the first pass. The number of trees of size u that could exist in G is $\leq m(d^4)^u$. There are m different choices for the root of tree T and d^4 choices for each subsequent node, as the next node is distance ≥ 4 away in G. Therefore,

E[trees of size u that survive]
$$\leq m(d^4)^u \cdot (d+1)^u \cdot 2^{u*(1-l)}$$

= $m(d^4(d+1) \cdot 2^{(1-l)})^u$

Because of our earlier assumption that $16d^4(d+1) < 2^l$, we can simplify further:

E[trees of size u that survive] $\leq m(2^l \cdot 2^{1-l_1})^u$ = $m(2^u)$

If $u \ge \Omega(\log m)$, then the expected number of trees is o(1). Thus Beck's algorithm runs in polynomial time in m.