Lecture 2: Lovász Local Lemma + Beck's Algorithm

Lecturer: Ronitt Rubinfeld Scribe: Vivian Qian

1 Lovász Local Lemma

1.1 Motivation

We want to argue that there is a nonzero probability that no "bad events" occur. If $A_{1}, A_{2}, \ldots, A_{n}$ are "bad events", what is the probability that none of them occur?

Usual Way If we assume nothing about A_{i} 's wrt independence, we can use union bound:

$$
\operatorname{Pr}\left[\cup A_{i}\right] \leq \sum_{i} \operatorname{Pr}\left[A_{i}\right]
$$

If each A_{i} occurs with probability p, and $p<\frac{1}{n}$, then $\operatorname{Pr}\left[\cup \overline{A_{i}}\right]>0$.
Independence If we assume A_{i} 's are independent and nontrivial (e.g. $\operatorname{Pr}\left[A_{i}\right]<1$), then:

$$
\begin{aligned}
\operatorname{Pr}\left[\cup A_{i}\right] & \leq 1-\operatorname{Pr}\left[\cap \overline{A_{i}}\right] \\
& =1-\prod_{i} \operatorname{Pr}\left[\overline{A_{i}}\right]<1
\end{aligned}
$$

Therefore, there is always a nonzero probability that no A_{i} occurs under these assumptions.
What if A_{i} 's have only "some" independence?

1.2 Lovász Local Lemma

Definition 1. A is independent from B_{1}, \ldots, B_{k} if $\forall J \in[k]$ where $J \neq \emptyset$:

$$
\operatorname{Pr}\left[A \cap \bigcap_{j \in J} B_{j}=\operatorname{Pr}[A] * \operatorname{Pr}\left[\bigcap_{j \in J} B_{j}\right]\right.
$$

Definition 2. Given events $A_{1}, \ldots, A_{n}, D=(V, E)$ with $V=[n]$ is a dependency graph of A_{1}, \ldots, A_{n} if each A_{i} is independent of all A_{j} that aren't its neighbors in D.
Theorem 3 (symmetric Lovász Local Lemma). Let A_{1}, \ldots, A_{n} be events s.t. $\operatorname{Pr}\left[A_{i}\right] \leq p \forall i$, with dependency graph D of degree $\leq d$. If ep $(d+1) \leq 1$, then $\operatorname{Pr}\left[\bigcap_{i=1}^{n} \overline{A_{i}}\right]>0$.

Notice that this has no dependency on the number of events, n. If the degree d is small, this is better than the union bound.

1.3 Two Coloring Application

Theorem 4. Let $S_{1}, \ldots S_{m} \in X$ where $\left|S_{i}\right|=l$ and each S_{i} intersects with at most d other S_{j} 's. If $e(d+1) \leq 2^{l-1}$, then a 2-coloring exists s.t. each S_{i} is not monochromatic.
Proof. Randomly color each element of X red or blue. Let A_{i} be the event that S_{i} is monochromatic. The probability p that A_{i} occurs is the probability that all elements are red or blue, which is $\frac{1}{2^{l-1}}$. Since each S_{i} intersects with at most d other S_{j} 's, and A_{i} is only dependent on A_{j} if their intersection is nonempty, the dependency graph D of A_{1}, \ldots, A_{n} has degree d. By Lovász Local Lemma, since

$$
e p(d+1)=e * 2^{-(l-1)}(d+1) \leq 1
$$

there exists a 2 -coloring such that no S_{i} is monochromatic.

Second Application Given a CNF formula with l variables in each clause, with each variable in at most k clauses, if

$$
\frac{e(l k+1)}{2^{l-1}} \leq 1
$$

there exists a satisfying assignment.

2 Moser-Tardos Algorithm

Theorem 5. Let $S_{1}, \ldots, S_{m} \in X$ be sets with $\left|S_{i}\right|=l$ where each S_{i} intersects with at most d other S_{j} 's. If $c * e(d+1) \leq 2^{l-1}$, for some constant $c>1$, then a 2-coloring exists such that each S_{i} is not monochromatic.

2.1 Moser-Tardos Algorithm

1. Randomly assign each element of X to red or blue.
2. While there exists a monochromatic set:

- Choose an arbitrary monochromatic set S_{i}
- Randomly reassign colors of all elements in S_{i}.

3 Beck's Algorithm

Stronger Assumptions Let $D=d^{4}$. Assume l is constant and that $16 D(d+1)<2^{l}$.

3.1 Beck's Algorithm

```
Algorithm 1: Beck's Algorithm
    Given \(S_{1}, \ldots, S_{m} \in X\);
    First Pass;
    for each element \(j \in X\) do
        if \(j\) is "frozen" then
            do nothing;
        else
            pick color \(\in\) red, blue via coin flip;
            consider all \(S_{j}\) containing \(j\)
            if \(S_{j}\) has \(l_{1}\) points the same color and no points in the other color then
                    \(S_{j}\) becomes dangerous;
                    all uncolored points in \(S_{j}\) are "frozen";
            else
                pick color \(\in\) red, blue via coin flip;
            end
        end
    end
    if \(S_{i}\) is not yet 2 colored, then it "survives";
    Second Pass;
    Use brute force to find coloring of surviving \(S_{i}\) 's.
```


3.2 Analysis

Question How can we prove correctness and runtime of Beck's Algorithm?
We consider a single S_{i}. The probability that it survives is at least as likely as the probability that S_{i} becomes dangerous. This is because a set S_{i} can survive if its intersecting elements are frozen by neighboring sets:

$$
\begin{aligned}
\operatorname{Pr}\left[S_{i} \text { survives }\right] & \geq \operatorname{Pr}\left[S_{i} \text { is dangerous }\right] \\
& =\frac{2}{2^{l_{1}}} \\
& =2^{1-l_{1}}
\end{aligned} \quad / / \mathrm{P}(\text { all red })+\mathrm{P}(\text { all blue })
$$

*

The probability S_{i} is dangerous is exactly if all l_{1} elements are red or blue.

We now consider how two different sets S_{i} and S_{j} are related. The survival of S_{i} and S_{j} is not necessarily independent. Consider the case where $S_{i} \cap S_{j} \neq \emptyset$. If the intersecting points are frozen by S_{i}, the probability that S_{j} survives is higher. We can extend this logic even in cases where they do not directly overlap.

Figure 1: S_{i} and S_{j} dependent
In Figure 1, if the shown $\geq l$ points are monochromatic, the middle two sets will become dangerous. Since the middle two overlap with either S_{i} or S_{j}, this increases the probability that either survives. Therefore, S_{i} and S_{j} are not independent.

Figure 2: S_{i} and S_{j} independent
However, if we consider the case in Figure 2, where S_{i} and S_{j} are a distance 4 apart, the middle set becoming dangerous does not affect either S_{i} or S_{j}. We conclude that if the distance between S_{i} and S_{j} is ≥ 4, they survive independently of each other.

We will construct an useful graph G to prove correctness.

$$
\begin{aligned}
G & \left.\leftarrow \text { nodes } V \leftarrow[\mathrm{~m}] \text { (each node is a set } S_{i}\right) \\
& \leftarrow \text { edges }(i, j) \in E \text { iff } S_{i} \cap S_{j} \neq \emptyset
\end{aligned}
$$

Observe by LLL, a solution exists for this graph G. We claim the following:
Claim After the first pass, with high probability, all surviving nodes of G form connected components of size $O(\log m$ poly $(d))$.

Corollary If the above claim is true, then if l is constant, the second pass only needs to brute force $O\left(2^{l c \log m}\right)=O\left(m^{l c}\right)$, which is polynomial in m.

Proof. Consider the biggest tree $T \in C$ such that C is a component that survives and:

1. all nodes in T are a distance ≥ 4 in G
2. if the nodes in T of distance $=4$ are connected in G^{4} then T is connected

Figure 3: Nodes in $T \geq 4$ distance in G
If we pick T greedily, there exists a T whose size is $\geq \frac{|C|}{d^{3}}$. If C survives, then T also survives since $T \subseteq C$. Thus, $\operatorname{Pr}[T$ survives $] \geq \operatorname{Pr}[C$ survives $]$. Looking at Fig. 1 and 2 , for a $S_{i} \in T$ to survive, it must either:

- S_{i} is dangerous
- S_{i} is next to a dangerous S_{j} that froze its elements

However, since in T all elements are at least distance $4, S_{i} \cap S_{j}=\emptyset$. For each $S_{i} \in T$, we pick a neighbor $S_{i^{\prime}}$ in $(d+1)^{k}$ possible ways where $k=|T|$. Given all $S_{i^{\prime}}$ are disjoint, the probability that all k become dangerous is:

$$
\operatorname{Pr}\left[k \text { nodes } S_{i^{\prime}} \text { become dangerous }\right] \leq\left(2^{(1-l)}\right)^{k}
$$

Using union bound, the probability that all S_{i} survive:

$$
\operatorname{Pr}\left[\text { all } S_{i^{\prime}} \text { survive }\right] \leq(d+1)^{k} \cdot 2^{k(1-l)}
$$

We will now show that no such large tree survives after the first pass. The number of trees of size u that could exist in G is $\leq m\left(d^{4}\right)^{u}$. There are m different choices for the root of tree T and d^{4} choices for each subsequent node, as the next node is distance ≥ 4 away in G. Therefore,

$$
\begin{aligned}
\mathrm{E}[\text { trees of size } \mathrm{u} \text { that survive }] & \leq m\left(d^{4}\right)^{u} \cdot(d+1)^{u} \cdot 2^{u *(1-l)} \\
& =m\left(d^{4}(d+1) \cdot 2^{(1-l)}\right)^{u}
\end{aligned}
$$

Because of our earlier assumption that $16 d^{4}(d+1)<2^{l}$, we can simplify further:

$$
\begin{aligned}
\mathrm{E}[\text { trees of size } \mathrm{u} \text { that survive }] & \leq m\left(2^{l} \cdot 2^{1-l_{1}}\right)^{u} \\
& =m\left(2^{u}\right)
\end{aligned}
$$

If $u \geq \Omega(\log m)$, then the expected number of trees is $o(1)$. Thus Beck's algorithm runs in polynomial time in m.

