
6.842 Randomness and Computation February 6, 2020

Lecture 2: Lovász Local Lemma + Beck’s Algorithm
Lecturer: Ronitt Rubinfeld Scribe: Vivian Qian

1 Lovász Local Lemma

1.1 Motivation

We want to argue that there is a nonzero probability that no ”bad events” occur. If A1, A2, ..., An are
”bad events”, what is the probability that none of them occur?

Usual Way If we assume nothing about Ai’s wrt independence, we can use union bound:

Pr[∪Ai] ≤
∑
i

Pr[Ai]

If each Ai occurs with probability p, and p < 1
n , then Pr[∪Ai] > 0.

Independence If we assume Ai’s are independent and nontrivial (e.g. Pr[Ai] < 1), then:

Pr[∪Ai] ≤ 1− Pr[∩Ai]

= 1−
∏
i

Pr[Ai] < 1

Therefore, there is always a nonzero probability that no Ai occurs under these assumptions.

What if Ai’s have only ”some” independence?

1.2 Lovász Local Lemma

Definition 1. A is independent from B1, ..., Bk if ∀J ∈ [k] where J 6= ∅:

Pr[A ∩
⋂
j∈J

Bj = Pr[A] ∗ Pr[
⋂
j∈J

Bj]

Definition 2. Given events A1, ..., An, D = (V,E) with V = [n] is a dependency graph of A1, ..., An

if each Ai is independent of all Aj that aren’t its neighbors in D.

Theorem 3 (symmetric Lovász Local Lemma). Let A1, ..., An be events s.t. Pr[Ai] ≤ p∀i, with depen-
dency graph D of degree ≤ d. If ep(d + 1) ≤ 1, then Pr[

⋂n
i=1 Ai] > 0.

Notice that this has no dependency on the number of events, n. If the degree d is small, this is better
than the union bound.

1.3 Two Coloring Application

Theorem 4. Let S1, ...Sm ∈ X where |Si| = l and each Si intersects with at most d other Sj’s. If
e(d + 1) ≤ 2l−1, then a 2-coloring exists s.t. each Si is not monochromatic.

Proof. Randomly color each element of X red or blue. Let Ai be the event that Si is monochromatic.
The probability p that Ai occurs is the probability that all elements are red or blue, which is 1

2l−1 . Since
each Si intersects with at most d other Sj ’s, and Ai is only dependent on Aj if their intersection is
nonempty, the dependency graph D of A1, ..., An has degree d. By Lovász Local Lemma, since

ep(d + 1) = e ∗ 2−(l−1)(d + 1) ≤ 1,

there exists a 2-coloring such that no Si is monochromatic.

1

Second Application Given a CNF formula with l variables in each clause, with each variable in at
most k clauses, if

e(lk + 1)

2l−1
≤ 1,

there exists a satisfying assignment.

2 Moser-Tardos Algorithm

Theorem 5. Let S1, ..., Sm ∈ X be sets with |Si| = l where each Si intersects with at most d other
Sj’s. If c ∗ e(d + 1) ≤ 2l−1, for some constant c > 1, then a 2-coloring exists such that each Si is not
monochromatic.

2.1 Moser-Tardos Algorithm

1. Randomly assign each element of X to red or blue.

2. While there exists a monochromatic set:

• Choose an arbitrary monochromatic set Si

• Randomly reassign colors of all elements in Si.

3 Beck’s Algorithm

Stronger Assumptions Let D = d4. Assume l is constant and that 16D(d + 1) < 2l.

3.1 Beck’s Algorithm

Algorithm 1: Beck’s Algorithm

Given S1, ..., Sm ∈ X;
First Pass;
for each element j ∈ X do

if j is “frozen” then
do nothing;

else
pick color ∈ red, blue via coin flip;
consider all Sj containing j
if Sj has l1 points the same color and no points in the other color then

Sj becomes dangerous;
all uncolored points in Sj are “frozen”;

else
pick color ∈ red, blue via coin flip;

end

end

end
if Si is not yet 2 colored, then it “survives”;

Second Pass;
Use brute force to find coloring of surviving Si’s.

2

3.2 Analysis

Question How can we prove correctness and runtime of Beck’s Algorithm?

We consider a single Si. The probability that it survives is at least as likely as the probability that
Si becomes dangerous. This is because a set Si can survive if its intersecting elements are frozen by
neighboring sets:

Pr[Si survives] ≥ Pr[Si is dangerous]

=
2

2l1
// P(all red) + P(all blue)

= 21−l1

*
The probability Si is dangerous is exactly if all l1 elements are red or blue.

We now consider how two different sets Si and Sj are related. The survival of Si and Sj is not
necessarily independent. Consider the case where Si ∩ Sj 6= ∅. If the intersecting points are frozen by
Si, the probability that Sj survives is higher. We can extend this logic even in cases where they do not
directly overlap.

Figure 1: Si and Sj dependent

In Figure 1, if the shown ≥ l points are monochromatic, the middle two sets will become dangerous.
Since the middle two overlap with either Si or Sj , this increases the probability that either survives.
Therefore, Si and Sj are not independent.

Figure 2: Si and Sj independent

However, if we consider the case in Figure 2, where Si and Sj are a distance 4 apart, the middle set
becoming dangerous does not affect either Si or Sj . We conclude that if the distance between Si and Sj

is ≥ 4, they survive independently of each other.

3

We will construct an useful graph G to prove correctness.

G← nodes V ← [m] (each node is a set Si)

← edges (i, j) ∈ E iff Si ∩ Sj 6= ∅

Observe by LLL, a solution exists for this graph G. We claim the following:

Claim After the first pass, with high probability, all surviving nodes of G form connected components
of size O(logm poly(d)).

Corollary If the above claim is true, then if l is constant, the second pass only needs to brute force
O(2lc logm) = O(mlc), which is polynomial in m.

Proof. Consider the biggest tree T ∈ C such that C is a component that survives and:

1. all nodes in T are a distance ≥ 4 in G

2. if the nodes in T of distance = 4 are connected in G4 then T is connected

Figure 3: Nodes in T ≥ 4 distance in G

If we pick T greedily, there exists a T whose size is ≥ |C|d3 . If C survives, then T also survives since
T ⊆ C. Thus, Pr[T survives] ≥ Pr[C survives]. Looking at Fig. 1 and 2, for a Si ∈ T to survive, it must
either:

• Si is dangerous

• Si is next to a dangerous Sj that froze its elements

However, since in T all elements are at least distance 4, Si ∩ Sj = ∅. For each Si ∈ T , we pick a
neighbor Si′ in (d + 1)k possible ways where k = |T |. Given all Si′ are disjoint, the probability that all
k become dangerous is:

Pr[k nodes Si′ become dangerous] ≤ (2(1−l))k

Using union bound, the probability that all Si survive:

Pr[all Si′ survive] ≤ (d + 1)k · 2k(1−l)

4

We will now show that no such large tree survives after the first pass. The number of trees of size u
that could exist in G is ≤ m(d4)u. There are m different choices for the root of tree T and d4 choices
for each subsequent node, as the next node is distance ≥ 4 away in G. Therefore,

E[trees of size u that survive] ≤ m(d4)u · (d + 1)u · 2u∗(1−l)

= m(d4(d + 1) · 2(1−l))u

Because of our earlier assumption that 16d4(d + 1) < 2l, we can simplify further:

E[trees of size u that survive] ≤ m(2l · 21−l1)u

= m(2u)

If u ≥ Ω(logm), then the expected number of trees is o(1). Thus Beck’s algorithm runs in polynomial
time in m.

5

